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This report presents the principles of the income protection (IP) insurance policy as well as the

procedures used to estimate the corresponding premia.  An overview of the income protection concept

is presented first.  A general description of the rating procedure is presented followed by a technical

discussion of the data and the statistical equations used in the premia estimations.  Fortran code used in

the rating process is provided in three appendices.

The Income Protection Policy

The income protection policy (IP) insures producers against low income events due to either

low yields and/or low prices.  In contrast to the traditional multiple peril insurance, however, the income

protection policy will not provide indemnities if yields are low but prices are sufficiently high so that

revenues exceeds the payment trigger levels.  Conversely, the income protection policy will pay

indemnities at  higher yield levels in years when prices are low enough to reduce revenues to levels

below payment trigger levels.  Figure 1 graphically contrasts the situations in which the income

protection policy would pay out to the current yield insurance payouts.  In both cases, the assumed

APH yield is 100 units with an expected prices of $2 per unit of output.  Both the yield and IP payment

triggers are assumed to be 75% of the mean values.
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The current multiple peril yield insurance incurs indemnities whenever yields fall below 75%,

regardless of the price received for the quantity actually produced.  If prices are high enough to offset

the yield loss, the revenues received from the crop may exceed $150 (75% of the expected gross

return) with the producer receiving additional indemnities further increasing income.  These events are

graphically demonstrated by the area above and to the right of the curve, PY = 150, and to the left of

the line, Y = 75.

If producers are concerned with low revenue events rather than low yield events, the producer

would be more concerned with events below the curve, PY = 150.  Thus a producer who would elect

IP coverage would be forgoing payments associated with events to the left of the line, Y = 75, but

below the curve PY = 150.

The payout distribution and hence the actuarily neutral premia associated with each policy will

differ and will depend upon the joint probability density function of price and yield. The remainder of

this report will describe the procedures used to estimate the joint distribution of prices and yields as

well as the procedures used to estimate the actuarily neutral premia.

Basic Procedures

The procedures used to rate this product are somewhat involved.  Figure 2 is a flow chart

which graphically portrays the steps involved in the process.  In this section we present an overview of

the process described in the flow chart.  In the following section a more detailed mathematical

description is presented.  The order of the presentation follows the steps of the flow chart in both

discussions.
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Steps 1 and 3.  The prospective buyer is required to provide from four to ten years of yield

history data on the farm’s total acres grown in the county (units are not allowed in the IP pilot).  If the

producer does not have four years of data the appropriate t-yields are assigned.  The producer is also

required to provide the years associated with each reported yield.  The producer's yields are used to

calculate the normal APH yields and the revenue trigger levels.

Step 2.  The model uses four additional sets of data in the rate-making process:  (1) national or

regional yield data [from National Agricultural Statistics Service (NASS)], (2) futures price data, (3)

county yield data [NASS], and (4) panel or cross-sectional time series data on producer yields.

Steps 4 and 5.  The national or regional yield series is used to estimate the yield trend.  The

estimated yield trend is then imposed on each county series of that crop.  Figures 3, 4, and 5

graphically present the national yields and estimated trend for corn, spring wheat, and southeastern

cotton, respectively.  A discussion of the technical aspects of the estimation is presented later.

For each county we use a long yield history to more accurately estimate the frequency and

severity of regional events, which cannot be adequately captured in 4–10 years of level data.  The

estimated national trend is imposed upon the county yield series.  Figures 6–12 graphically portray

representative county yields as well as the estimated trend for each of the counties reported.  The rating

procedure adjusts for differing productivity between counties by estimating  separate intercepts for each

county.  Figure 13 contrasts the county yields in Benton County, Indiana to those of Adair County,

Iowa. It is apparent that the county yields of Benton County are  higher than those in Adair County. 

The estimated differences in the mean yields, after accounting for trend, is about 13 bushels per acre.
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In each county examined, the yield variability increases with expected county yields.  To

account for this heteroskedasticity, the county yields are converted to proportions.  This is

accomplished by dividing the actual county yield by the predicted county yield.  Figures 14–20

graphically present the resulting proportions as a percent of the predicted yield.  It is apparent that these

geographically dispersed counties have experienced different regional events.  When estimating premia,

the long-term history of proportional deviations is used to estimate the likelihood of regional events.

Steps 6 and 7.  APH farm level data from the Federal Crop Insurance Corporation (FCIC) is

used to estimate the additional producer level yield variability beyond that contained in the long-term

county yield series.  It is assumed that the relative farm level variability around the county yields has

remained unchanged across time.  Data was extracted from FCIC’s APH files for all farms reporting 8

(for corn and wheat) or 6 (for cotton) or more years of APH yields for each county.  Each farm's yields

were used to estimate that farm's average yields as a proportion of the county's expected yield.  (This

process is discussed more fully later in the report.)  Farm level proportional errors are then regressed

on the county proportional errors.  This process decomposes total farm level proportional variability

into two parts:  events affecting the entire county and the remaining farm level variability.  This residual

farm level variability is recombined with the longer term county variability when premia are estimated.

The individual farms' data (from step 1) is also converted to proportional yields and a mean

proportion computed.  This mean proportion is the farm's yield as a proportion of the expected county

yield.  Hence, if a farm's yield were 120%, or 1.2 times the actual county yield for 4 years, the farm's

expected proportion would be 1.2, or 120%.  As will be noted in following examples, the resulting

expected yield of the farm will usually not be the same as the farm's APH yield, which was used to
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determine the revenue payment trigger levels.  The rating process adjusts rates to account for this

possible divergence.

Step 8.  Historical futures price data are used to estimate the variability in prices.  Corn prices

are based on the December corn contract on the Chicago Board of Trade (CBOT).  Wheat uses the

September CBOT contract, while cotton uses the December contract on the New York Cotton

exchange.  The process for corn is as follows:  (1) At the time of sign-up, the February average of the

December futures price is multiplied by the APH yield and used to determine the indemnity trigger

levels.  In the fall, the November average of the December futures prices is multiplied by the producer's

yield to determine the revenue to count.  (Cotton uses the average price from last two weeks of January

and the first two weeks of February.  Wheat uses the average of February futures prices.)

Thirty-five years of historical futures market data are used to estimate the probability

distribution of price changes from February to November for the December futures price.  Historical

prices were calculated and inflated to 1995 purchasing power units.  An examination of the data

indicated that the presence of price stabilization loan rates significantly reduced the variability of

potential price movements in years when prices were close to the loan rates.  To account for the effect

of loan prices upon price variability, the historical deviations were scaled up for those years.  The

scaled price deviations are then regressed upon county yield deviations to account for the correlation

between price and the county's yield.  The process decomposes the variation in prices into two parts,

that associated with county yield variability and a residual variation.

Steps 9–13.  The above steps estimate various parameters which are used to estimate actuarily

neutral premia.  However, the estimates of the parameters are themselves random variables.  The
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precision with which these variables can be estimated varies with the length of the corresponding data

sets as well as the structure of the statistic itself.  (It is well known that the variance of an estimated

sample mean decreases with increases in sample size.)  When estimated statistics are used to estimate

premia, an additional source of uncertainty enters the rate making process.  Bootstrapping is a robust

nonparametric statistical procedure that substitutes computer power for often intractable mathematical

analysis.  Premia are adjusted to account for the degree of parameter uncertainty inherent in the data

set.  Hence, other things equal, a farm with four years of APH yields will pay a slightly higher premia

than will a farmer with 8 years of APH data due to the increased uncertainty with respect to the farm's

mean yield levels.

Bootstrapping is essentially a Monte Carlo process which first regenerates a number of samples

using the assumed statistical process and then reestimates the statistical parameters of interest.  The

distribution of the reestimated statistics is used to approximate the distribution of the original parameter

estimates.  After the original statistics are estimated in steps 4–8, a sample representing the entire

process is regenerated in steps 9–13.  The statistics of interest are reestimated in steps 4–8.  The

process is repeated until 200 sets of reestimated parameters are obtained.

Steps 14–21.  Upon completion of the 200th reestimation, the model estimates the premia by

completing 10,000 simulations of yield, price, and revenues using the parameters and variability from

steps 4–13.  After 10,000 simulations, actuarily neutral premia are calculated as the average payout

over the simulations.  Loads and subsidies are added to obtain the final premia for quote.  
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The above discussion summarizes the premia estimation process.  The following section

presents a more detailed mathematical description of the rating procedures.  Numerical examples are

also presented, which demonstrate certain key concepts in the rating process.

A Mathematical Description

National Yield Trend (Step 4).  Due to heteroskedasticity, the national yield trend parameter is

estimated using three stage least squares as follows.

Regress:

(1)Nt ' b̂ N
1 % b̂ N

2 t % û N
t

where Nt is the national yield in year t,  are estimated national parameters, and  is 
the

b̂ N
1 and b̂ N

2 û N
t

estimated residual.  There are T years of national yield data.

Regress:

(2)* û N
t * ' â N

1 % â N
2 t % v̂ N

t

where  is the absolute value of the original residuals.* û N
t *

Predict:

(3)ˆaut ' â N
1 % â N

2 t

where is the predicted absolute value of the original residual.  ˆaut

Construct the transformed variables:

Ñt ' N t / ˆau t
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(4)1̃t ' 1 / ˆau t

t̃t ' t / ˆaut

Regress:

(5)Ñt ' b̂ N
1 1̃t % b̂ N

2 t̃ t % ẽ N
t

where  is the estimated trend after accounting for heteroskedasticity.b̂ N
2

For the later bootstrap sample regeneration, construct 

(6)N̂t ' b̂ N
1 % b̂ N

2 t

The County Model (Step 5)

Let Cs = 1, ..., S, be the county yield series over S years.  Again, three-stage least squares is

used to estimate the desired parameters.

Compute:

(7)cds ' Cs ! b̂ N
2 s

where CDs is the difference between the observed county yield and  for year s.b̂ N
2 s

Estimate the intercept term as

(8)â C
1 '

1
S

'S
s'1

cds

Construct:

(9)Ĉs ' â C
1 % b̂ N

2 s

(10)~cds' cds /Ĉs

1̃s ' 1 /Ĉ s
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Estimate:

(11)~cds ' â c
1 1̃s % ẽ c

s

using least squares, where  is the estimated intercept after accounting for heteroskedasticity 
and 

â C
1

ẽ C
s

is the estimated proportional county error.  To facilitate later estimates, construct:

(12)Ĉs ' â C
1 % b̂ N

2 s

and

. (13)C̃s ' C s /Ĉ s

The Panel Data (Step 6)

The panel data consists of historic APH yields as recorded in the FCIC's data base.  Let y f
q be

the reported APH yield for farm f = 1, ..., F in year q.  Let Qf be the number of observations reported

by farm f.  In the data base, Qf is far less than the number of observations available on the county data

but there are usually many farm level observations (F of them for each year in the data series).

The rate making process uses information contained in the county data series to adjust for the

representativeness of the years for which the producer reports yields.  This process is demonstrated

with a numerical example.  Figure 21 presents the last 10 years of Benton County, Indiana corn yields. 

An examination of Figures 8 and 16 indicate that the years 1988 and 1991 were two of the three

lowest county yield events (as a percent of the expected trended yield) in the past 50 years.  A farmer

whose APH yield series contains the years 1988 and 1991 would have seen the farm's APH average

yield drop substantially.  Given the information within the county yield series and assuming the farm is a
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member of the county pool, the farm's simple APH average yield is biased downward as an estimate of

the farm's true expected yield.  

The rate making process adjusts the premia to account for the potential bias.  The following

discussion presents the procedures used to account for the information contained in the county series

concerning the representativeness of the farm's yield series.  The process is completed for each farm in

the panel data and later for the individual purchasing insurance.  To proceed, compute:

(14)C̃ f
' 1/Qf '

q
C̃ f

q

for each farm where  is the county yield proportion (from (13)) for year q as reported by farm f,C̃ f
q

and Qf is, again, the number of observations reported by farm f.   is the average of the  values forC̃ f C̃

the years reported by producer f.

Construct:

(15)ỹ f
q ' y f

q / Ĉq C̃ f

and

(16)ỹ
f
' 1 /Qf '

q
ỹ f

q

where, again, y f
q is the yield for farm f in year q and  is the predicted county yield for year q.  

The
Ĉq

expression  is a transformed yield proportion that has been normalized for the 
representativeness of

ỹ f
q

the county yields in the years reported by the producer.  The value  is the 
average farm yield

ỹ
f

proportion as a proportion of the expected county yield.
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To demonstrate the above process, consider the values in Table 1.  The table contains county

data from Benton County Indiana as well as data from a hypothetical farm.  The farms' yields, yf, are

120%, or 1.2 times the county yields in each year.  The table demonstrates the effect of the years

reported on the farms' estimated APH yield as well as the  values (from 
(16)), which is termed the

ỹ
f

proportional APH.  In the table the notation used is CHAT = , CTILD =  CTILDHAT = Ĉq C̃ f
q, C̃ f,

and Yf = y f
q.  If only the last four years are used, the estimated 

yield APH of the farm is 167.3, while

  The latter number indicates that the 
county yields for the years 1992–1995 are

C̃ f
' 0.99098.

approximately centered on the trend line.  The resulting APH yield is not likely to be very biased as a

prediction of the farm's yield (if trend is accounted for).  Note that the proportional APH or ,ỹ
f
' 1.2

as would be expected given that 
farm yields were, by construct, 1.2 times the county yield.

When eight years of data are used to calculate the APH, the result is considerably different.  In

this case, the abnormally low yields from 1988 and 1991 result in a APH yield of 
149.0—more than

eighteen bushels below the result when four years are used.  Similarly,  
now equals 0.90487,

C̃ f

indicating that county yields for 1988–1995 are centered about 10% below the trend line.  The resulting

APH yields is now biased downward even after adjusting for trend.  The proportional APH, or ỹ
f

again equals 1.2 as should be the case given the construct of the 
example farm yield series.

The implications of the above example are potentially serious.  By construct, the actual

expected yield and the yield distribution is the same in both cases at 120% of the expected county

yield.  Yet with the current APH rules, the two cases would result in different revenue trigger levels

which correspond to different percentages of the producer's expected revenue, conditional upon

information contained in the county data.  The IP rates are adjusted to account for the different revenue

percentages actually being insured.  The estimation process continues as follows.
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Construct:

(17)ũ f
q ' ỹ f

q ! ỹ
f

and regress

(18)ũ f
q ' b̂ f

1 % b̂ f
2 C̃ f

q ! C̃ f
% ẽ f

q.

The above process decomposes the farm level proportional variation into two components:  (1) that

explained by the county proportional variation and (2) the remaining uncorrelated variability.  To

facilitate the bootstrapping exercise, construct

  . (19)û f
q ' b̂ f

1 % b̂ f
2 C̃ f

q ! C̃ f

The Individual Farm's Data (Step 7)

A similar process is completed for the insured's yield history.  Let Zi be the farm's yield in year I

with I total observations.  As before, construct:

(20)C̃ '
1
I
'
i

C̃i

(21)Z̃i ' Z i / Ĉ i C̃

(22)Z̃ '
1
I
'
i

Z̃i

and 

    (for bootstrapping only) (23)ûi ' b̂ f
1 % b̂ f

2 C̃i ! C̃



     1Space prevents a complete discussion of the bootstrapping literature.  The interested reader is referred to the articles
in the reference list.
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The Price Model (Step 8)

Let pdu, u = 1, ..., U, be U scaled price deviations.  To estimate the relationship between price

deviations and yield deviations, regress:

(24)pdu ' b̂ P
1 % b̂ P

2 Cu ! Ĉu % ê P
u

where  are estimated parameters, Cu is the county yield in year u,  is the predictedb̂ P
1 and b̂ P

2 Ĉu

county yield in year u, and  is the estimated deviation remaining after accounting for the 
county yield

ê P
u

deviations.  To facilitate the bootstrapping, construct:

(25)ˆpdu ' b̂ P
1 % b̂ P

2 Cu ! Ĉu

Bootstrapping New "Samples"

Bootstrapped samples are regenerated as follows.1

National Yields.  For the original T years and for j = 1, 2, ..., 200

< Draw  (from (5)) with replacement.ẽ N
t, j

< Construct . (26)Nt, j ' N̂ t % ˆaut ( ẽ N
t, j

where  is obtained from (6) and  is from (3).N̂t ˆaut

County Yields.  For the original S years and j = 1, 2, ..., 200

< Draw  (from (11)) with replacement.ẽ C
s,j

< Construct (27)Cs,j ' Ĉs % Ĉs ẽ C
s,j ' Ĉ s 1 % ẽ C

s,j
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where  is from (9).Ĉs

Panel Data.  For each of the F farms and Qf observations per farm

< Draw  from (18) with replacement.ẽ f
q,j

< Construct y f
q,j ' ỹ f % û f

q % ẽ f
q,j Ĉq C̃ f

where  is from (16),  is from (19),  is from (9), and  is from 
(14).

ỹ f û f
q Ĉq C̃ f

Individual Data  For the I observations, 

< Draw  from (18) with replacement.ẽi,j

< Construct (29)Zi,j ' Z̃ % ûi % ẽi,j Ĉi C̃

where  is from (22),  is from (23),  is from (9), and  is from (20).Z̃ ûi Ĉi C̃

Price Data.  For the U observations,

< Draw  from (24) with replacement.ê P
u,j

< Construct (30)pdu,j ' ˆpdu % ê P
u,j

As can be seen by an examination of (1)–(30), the regenerated bootstrapped samples are

constructed by reversing the original estimation transformations with resampled errors.  For each 
of the

j system samples the parameters   are reestimated using the 
RHS

b̂ N
j , â C

1,j, b̂ C
j , b̂ f

j , Z̃
j
, and b̂ P

j

variables from the original regressions.  The reestimated parameter estimates are used to approximate

the uncertainty in the original parameter estimates.

Before proceeding to a discussion of the revenue simulation it should be noted that the code

distributed to vendors does not actually complete all the estimations described above.  To reduce

execution time the resulting parameter estimates and residuals were written to data files.  In addition, the
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large and varying (by county) number of observations in  (from (18)) were 
mapped into an inverse

ẽ f
q

cumulative density function (CDF) from which the errors used in the simulations are actually drawn. 

The process involved in doing so is included in the code presented in Appendix C.

Simulating the Distribution of Revenue

Actuarily neutral premia are estimated using the above parameter estimates and estimated

residuals.  Ten thousand possible revenue realizations were generated and used to estimate the

expected payouts and the resulting premia.  The possible revenue levels are generated as follows.  The

assumed year is S.  The variable names correspond to the variable names in the attached code.

The Bootstrap Number

< Randomly draw j from the integers 1, ..., 200 with replacement.

County Yield

< Draw  from (11) with replacement.ẽ C
S

< Construct        ychats = (31)â C
1 % b̂ N

2 S

          ychatsj = (32)â C
1,j % b̂ N

2,jS

    ycts = (33)yctsj ' 1 % ẽ C
j

     ycs = (34)ychats ( ycts

    ycsj = (35)ychatsj ( yctsj

In the above, as well as the following expressions, the variable names ending with j represent the

estimated or forecast levels of the associated variable if the jth bootstrapped parameter estimate had

been used in lieu of the original parameter estimates.
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Individual Yield

< Draw  from (18) (actually from the inverse CDF function described above).ẽ f
S

< Construct          us = (36)b̂ f
2 ycts ! 1 % ẽ f

S

  usj = (37)b̂ f
2,j yctsj ! 1 % ẽ f

S

    
= (38)Z̃S yits ' Z̃ % us

   
= (39)Z̃S,j yitsj ' Z̃

j
% usj

    
 ZS = (40)yitsj ( ychatsj

Price Model

< Draw eP
u from (24)

< Construct          dpns = (41)b̂ P
2 ycs ! ychats % e P

u

  
dpnsj = (42)b̂ P

2,j ycsj ! ychatsj % e P
u

    
pns = fp + dpns (43)

   pnsj = fp + dpnsj (44)

where fp is the spring average price.

Revenue

< Construct          revs = pns ( ZS (45)

  revsj = pnsj ( ZS,j (46)

   rev = revs + (revs ! revsj) (47)

where rev is the simulated revenues.  Expression (47) can be explained by recognizing what the

bootstrap process actually does.  The bootstrap is essentially a Monte Carlo study which uses the
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originally estimated parameters as the actual parameters.  With these known parameters a new sample

is generated and new parameters estimated.  During the simulation process, alternative values are

generated that differ only in the bootstrapped parameter estimates, which vary from the original

parameter estimates.  However, in the bootstrapped sample the original parameter estimates were

actually the true values of the parameters from which the samples were generated.  Hence, in the Monte

Carlo exercise, a value generated with the original estimates,  revs is the "true" value, while the estimate,

revsj, is the "forecast" value using the jth possible set of parameter estimates.  In the Monte Carlo

study, the "forecast error" is the "actual" value less the "forecast" value, or

"forecast error" = revs ! revsj. (48)

In reality, the original forecast revs is merely a "forecast value," which itself has an associated

forecast error.  Since we cannot obtain a description of the true forecast error structure, the "forecast

error" from the Monte Carlo exercise is used, i.e.,

rev = revs + "forecast error" (49)

or 

rev = revs + (revs ! revsj) (50)

For a more detailed (and perhaps clearer) discussion of these concepts, the reader is referred to the

paper by Prescott and Stengos.

The above process is repeated to generate 10,000 possible revenue realizations.  Actuarily

neutral premia are computed as the average payout for a given revenue trigger.



18

The estimated premia are loaded by .88.  If the producer elects to purchase insurance at a level

less than 65% of the APH revenue level, the subsidy is set at 60% of the 50% revenue premium.  At

election levels of 65% or higher, the subsidy is set at 75% of the 50% revenue premia.
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Bootstrap 
price data

Bootstrap 
farmers’ data

If nread = 0, estimate
the panel coefficient,
b2,np

^ f

(6)

Open appropriate files
< national yield
< national price
< county yield
< panel data
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Secure input from producer
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^C
Estimate national trend
parameter, 
b2,nb using G.L.S.
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FIGURE 2
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FIGURE 3

National Corn Yields
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FIGURE 4

National Wheat Yields
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FIGURE 5

Southeastern Cotton Yields
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FIGURE 6:  CORN YIELDS

Champaign County, Illinois
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FIGURE 7:  CORN YIELDS

Adair County, Iowa
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FIGURE 8:  CORN YIELDS

Benton County, Indiana
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FIGURE 9:  WHEAT YIELDS

Kittson County, Minnesota
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FIGURE 10:  WHEAT YIELDS

Grand Forks County, North Dakota
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FIGURE 11:  COTTON YIELDS
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FIGURE 12:  COTTON YIELDS
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FIGURE 13:  CORN YIELDS

Adair County, Iowa and Benton County, Indiana
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FIGURE 14:  PROPORTIONAL CORN YIELDS

Champaign County, Illinois
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FIGURE 15:  PROPORTIONAL CORN YIELDS

Adair County, Iowa
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FIGURE 16:  PROPORTIONAL CORN YIELDS

Benton County, Indiana
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FIGURE 17:  PROPORTIONAL WHEAT YIELDS

Kittson County, Minnesota
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FIGURE 18:  PROPORTIONAL WHEAT YIELDS

Grand Forks County, N. Dakota
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FIGURE 19:  PROPORTIONAL COTTON YIELDS
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FIGURE 20:  PROPORTIONAL COTTON YIELDS

Georgia
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FIGURE 21

Benton County, Indiana
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TABLE 1

Example APH Calculations and Premia Adjustment, Benton County, Indiana

Example with four years in the APH history

Years C CHAT CTILD Yf Yf
CHAT ( CTILDHAT

1995 113.9 143.73 0.7925 136.7 0.9596

1994 162.5 141.80 1.1460 195.0 1.3877

1993 131.6 139.87 0.9409 157.9 1.1394

1992 149.6 137.93 1.0846 179.5 1.3133

CTILDHAT 0.99098

YIELD APH 167.3

PROPORTIONAL APH 1.2

ESTIMATED PREMIUM PER ACRE $13.17

Example with eight years in the APH history

Years C CHAT CTILD Yf Yf
CHAT ( CTILDHAT

1995 113.9 143.73 0.7925 136.7 1.0509

1994 162.5 141.80 1.1460 195.0 1.5198

1993 131.6 139.87 0.9409 157.9 1.2478

1992 149.6 137.93 1.0846 179.5 1.4383

1991 78.1 136.00 0.5743 93.7 0.7616

1990 140.6 134.07 1.0487 168.7 1.3908

1989 143.1 132.14 1.0830 171.7 1.4362

1988 74.1 130.20 0.5691 88.9 0.7547

CTILDHAT 0.90487

YIELD APH 149.0

PROPORTIONAL APH 1.2

ESTIMATED PREMIUM PER ACRE $5.92
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