PASTURE, RANGELAND, FORAGE (PRF) PLANS OF INSURANCE

This presentation does not replace or supersede any procedures or modify any provisions contained in the complete insurance policy.

Introduction and

 Program Overview

 Program Overview}

Introduction and Overview
Science Behind the Program
Program Basics
Detailed Example
Additional Tools and Information

Program Overview - Purpose

- Section's Purpose:
\square Introduction to programs and unique topics
\square Provide background and basic philosophy
- Covers 2 Programs:
\square PRF Rainfall Index and PRF Vegetation Index
\square Delineations noted
- Program Details:
\square Provided in following sections of the presentation

History

- History
\square The Agricultural Risk Protection Act of 2000 (ARPA) mandates programs to cover pasture and rangeland
\square Two new pilot programs approved for 2007 Crop Year
- Pasture, Rangeland, Forage (PRF) - Rainfall Index
- Pasture, Rangeland, Forage (PRF) - Vegetation Index
\square Both programs covered in this presentation
- Slides covering both programs
- Slides covering Rainfall Index Only
- Slides covering Vegetation Index Only

Bотн
RAINFALL
VEGETATION

Introduction

■ Beginning with the 2007 Crop Year

Program Potential

■ Estimated acres covered by the pilot

State	Grazingland Acres	Hayland Acres
Colorado	$14,734,538$	506,260
Idaho	$4,347,110$	591,918
North Dakota	$11,806,699$	$1,318,789$
Pennsylvania	471,656	517,522
South Carolina	760,193	191,801
Texas	$62,905,239$	$1,372,929$
Total	$\mathbf{9 5 , 0 2 5 , 4 3 5}$	$\mathbf{4 , 4 9 9 , 2 1 9}$

Program Potential

- Estimated program potential:
\square (assume: Participation = 10\%, Coverage Level = 75\%...)

State	Estimated Average Rate	Estimated Premium Volume
Colorado	14.0%	$\$ 3,977,019$
Idaho	14.4%	$\$ 3,992,180$
North Dakota	13.6%	$\$ 3,296,159$
Pennsylvania	4.4%	$\$ 846,801$
South Carolina	7.4%	$\$ 507,825$
Texas	18.4%	$\$ 18,146,679$
Total		$\$ 30,766,663$

Source: 2002 Census of Agriculture for grazingland and Hayland plus 1997 Census of Agriculture data for Grazing Permit Acres for the County Data

Introduction

- Beginning with the 2007 CY

Program Potential

■ Estimated acres covered by the pilot

State	Grazingland Acres	Hayland Acres
Colorado	$6,999,791$	250,480
Oklahoma	$14,732,631$	$1,301,112$
Oregon	$12,479,419$	551,819
Pennsylvania	218,386	285,480
South Carolina	251,952	38,302
South Dakota	$21,827,464$	788,963
Total	$\mathbf{5 6 , 5 0 9}, \mathbf{6 4 3}$	$\mathbf{3 , 2 1 6 , 1 5 6}$

Source: 2002 Census of Agriculture for grazingland and Hayland plus 1997 Census of Agriculture data for Grazing Permit Acres for the County Data

Program Potential

- Estimated program potential:
\square (assume: Participation = 10\%, Coverage Level = 75\%...)

State	Estimated Average Rate	Estimated Premium Volume
Colorado	9.0%	$\$ 1,217,513$
Oklahoma	6.3%	$\$ 2,580,173$
Oregon	7.8%	$\$ 2,729,686$
Pennsylvania	6.1%	$\$ 629,002$
South Carolina	5.2%	$\$ 78,339$
South Dakota	9.9%	$\$ 3,242,753$
Total		$\mathbf{\$ 1 0 , 4 7 7 , 4 6 6}$

Source: 2002 Census of Agriculture for grazingland and Hayland plus 1997 Census of Agriculture data for Grazing Permit Acres for the County Data

Challenges

- Crop challenges
\square Various plant species
\square Timing of plant growth
\square Crop continuously harvested via livestock
\square Lack of individual/industry data
\square Vast range of management practices across the industry
\square Publicly announced prices not available

Crop Information

- Crop
\square (0088) Pasture, Rangeland, Forage
- Crop Types
\square (064) Grazingland
\square (063) Hayland

Crop Types

- Grazingland
\square Established acreage for perennial forage
\square Intended for grazing by livestock
\square Acreage must be suitable for grazing

Crop Types

- Hayland
\square Established acreage for perennial forage
\square Intended for haying
\square Acreage must be suitable for haying
- Program covers all types of grazing and haying forage
\square (i.e. not just alfalfa)

Program Overview

■ GRP program
\square Goal - utilize an existing policy type

- Capitalize on current program familiarity
- Increase marketability and effectiveness
\square The resulting design is based on the principles of the existing GRP program

Program Overview

■ Index background
\square Lack of actual producer/industry production data
\square No consistent and sound methodology for measuring production of the crop
\square The deviation from long-term normal precipitation is used to establish the index

- SINGLE PERIL COVERAGE
\square Precipitation has a high degree of correlation to forage production

Program Overview

- Index driven - NOAA data
\square Primary index difference
- Based on NOAA data vs. NASS county yields
\square Reports precipitation data
\square Widely used source of precipitation information
\square Dependable source
\square Long data history - since 1948
\square Consistent and universal coverage through a grid system
- Grid boundaries vs. county boundaries

Program Overview

■ Index background
\square Lack of actual producer/industry production data
\square No consistent and sound methodology for measuring production of the crop
\square The deviation from long-term normal 'greenness' is used to establish the index
\square Crop 'greenness' reflectivity has a high degree of correlation to forage production

Program Overview

■ Index driven - EROS data (Earth Resources Observation and Science - USGS)
\square Primary index difference

- Based on EROS data vs. NASS county yields
\square Reports NDVI data (Normalized Difference Vegetation Index - aka 'greenness')
\square Widely used source of NDVI information
\square Dependable source
\square Sufficient data history - since 1989
\square Consistent and universal coverage through a grid system
- Grid boundaries vs. county boundaries

Program Overview

Grid
Overview

Program Overview

- Area of insurance $=0.25^{\circ}$ grids ($\sim 12 \times 12$ miles $)$

Program Overview

■ Areas of insurance $=0.25^{\circ}$ grids
\square Grids vs. County
\square Grids are approximately 12×12 miles in size
\square Provides for a consistent program across the United States
\square Counties vary in size, but the grids do not
\square Grid size reduces basis risk vs. county size

- Allows for closer correlation to individual experience
\square Grids will cross county and state lines

Program Overview

■ Area of insurance $=8 \times 8 \mathrm{~km}$ ($\sim 4.8 \times 4.8$ miles $)$

Program Overview

- Areas of insurance $=8 \times 8 \mathrm{~km}$ grids
\square Grids vs. County
\square Grids are approximately 4.8×4.8 miles in size
\square Provides for a consistent program across the United States
\square Counties vary in size, but the grids do not
\square Grid size reduces basis risk vs. county size
- Allows for closer correlation to individual experience
\square Grids will cross county and state lines

Program Overview

Index

Intervals

Program Overview

■ Index Intervals
\square Multiple Intervals offered - $\underline{6}$
\square Crop Year divided into 6, 2-month intervals for each grid
\square Similar to Crop Practices
\square Ability for producers to manage appropriate timing risks

- Correlate to individual growth patterns and production seasons
\square The 2-month intervals provide for greater reaction to precipitation events vs. a yearly average

Program Overview

■ Index Intervals

Program Overview

■ Index Intervals
Intervals
6, 2-month

Program Overview

■ Index Intervals
Intervals
6, 2-month

\square These Intervals act as 'mini-insurance periods’

- For example, indemnities payable on one Interval are not dependent on results from other Intervals

Program Overview

■ Index Intervals

\square Producers must select at least 2 intervals

- The purpose of the program is to insure annual forage production
\square Total annual forage production is influenced by precipitation in more than one 2-month interval; therefore, producers are required to insure in more than one interval

Maximum percentages are region specific
\square Based on growing season (50-70\%)

Program Overview

■ Index Intervals
\square Multiple Intervals offered - $\underline{4}$
\square Crop Year divided into 4, 3-month intervals for each grid
\square Similar to Crop Practices
\square Ability for producers to manage appropriate timing risks

- Correlate to individual growth patterns and production seasons
\square The 3-month intervals provide for greater reaction to forage reduction events vs. a yearly average

Program Overview

■ Index Intervals

Program Overview

■ Index Intervals
Intervals
4, 3-month

Program Overview

■ Index Intervals

Intervals

4, 3-month

\square These Intervals act as 'mini-insurance periods’

- For example, indemnities payable on one Interval are not dependent on results from other Intervals

Program Overview

■ Index Intervals
\square Minimizes dependency on subjective pre-determined forage growing seasons
\square Maintains consistency across the country

- Allows for regional and local variance
- Allows individual freedom to select appropriate intervals
\square Index Intervals are mutually exclusive
- One index does not effect the others
- All rated separately

Program Overview

- Coverage Levels
\square Percentages available: 90, 85, 80, 75, and 70
\square Consistent with other GRP programs
\square Higher coverage levels reduce basis risk
- Correlates closer to individual experience
- Catastrophic Risk Protection (CAT)
\square Not currently available
\square Producers are still eligible for NAP coverage

Вотн

Program Overview

- Rating
\square Each grid, index interval, and coverage level is individually rated
- Minimizes adverse selection
\square No economic advantage of insuring in one scenario vs. another
\square Encourages producers to select a scenario that best mitigates their operation/production risks
- Adequate data permits the individual rating
\square Allowing the rates to accurately reflect the risks of each scenario

Program Overview

- Not required to insure 100% of acreage
\square Forage utilized in the annual grazing or hay cycle can be insured without insuring all acreage
\square All acres within a property may not be productive, e.g., rocky areas, submerged areas
\square Provides additional flexibility for the insured to design the coverage to his specific needs
\square Because the program is a group program and other programs are not available, there is no opportunity to 'move’ production

Program Overview

■ Sales Closing Date: November 30
\square Only one Sales Closing per year
\square Consistent with other programs’ SCD
\square Minimizes possible forecasting and program abuse

- 60+ day lag to the Crop Year RAINFALL
- 100+ day lag to the Crop Year Vegetation
- Note: This is a change from earlier versions of the policy sent to the companies - but was changed due to company feedback

Program Overview

■ Program supported via internet
\square Provides the most efficient and effective way to deliver the program
\square Allows access to the mapping tools

- Locate grazing areas and associated Grid ID numbers
\square Provides access to the historical indices
\square Allows access to all relevant data, materials, and tools associated with the program

Advantages

- Flexibility
- Covers predominant perils
- Provides for timely indemnities

■ Index Intervals are mutually exclusive

- Individual loss adjustments not needed
- Easily understood Index
- Production records not required
- Moral hazard and adverse selection minimized

Disadvantages

■ Individual losses/experiences not covered

- Slight terminology differences from other GRP programs

Questions?

Science And

Technology Behind the Program

Crop Biology

- The program addresses forage-based production systems on land areas producing primarily perennial vegetation
- Comprised of diverse plant communities and mixtures:
- Perennial and annual
- Warm season and cool season

■ Different growth habits over extended time periods

Crop Biology

- Forage may be harvested directly by grazing animals, harvested for hay, or a combination of both:
\square Continual harvest and/or single haying
- Capacity to live and reproduce from year to year
- Because of the nature of forage-based systems, the program is designed to insure annual production

Program Technology

- Indices are highly correlated with forage production, but do not directly predict actual forage production
\square PRF Rainfall Index - Precipitation da
\square PRF Vegetation Index - NDVI data
RAINFALL
VEGETATION
- Index starts accumulating on the first day of the specified interval through the last day of the same interval
\square At the end of each interval, the percent of normal is calculated
\square Influence of extreme precipitation events is effectively reduced Rainfall Only

Program Technology

- Daily historical data since 1948
- Data updated daily
- Data is interpolated by NOAA into weather grids nationwide
$\square \sim 12 \times 12$ miles in size (0.25° data), and used in many other national programs

Grid Example for North Dakota

- CitiesRainfall Grid
\square Counly Bcundaries

Program Technology

- Historical data since 1989
- Data updated every 14 days
- Grids are 8 km
\square Data collected in 1 km grids - aggregated up to 8 km grids
$\square \sim 4.8 \times 4.8$ miles in size, and used in many other national programs

Program Technology

- The Vegetation Index is derived from 2 data sources:
\square NDVI data from NASA and processed by EROS
\square NOAA gridded average daily temperature data

■ NDVI captures vegetation 'greenness'

- Temperature correction for excessive hot and cold temperatures suppressing growth even when plants are green

Grid Example for Oklahoma

- Clifes
\square 8 km NDVI Grid
Counly Baundaries

Questions?

Program Basics

Terminology and Other Differences

- Grid and Grid ID in addition to County

■ Insurable and Insured acres versus Planted acres

- Index versus Yields
- Web based
- No current CAT coverage
- Not required to insure 100% of acres
- Must select at least two Index Intervals Rainfall only
- Grid IDs, crop types, acreage, and Index Intervals will be determined prior to the Sales Closing Date

Basic Definitions

■ County: may also include any acreage within a grid ID that crosses an adjoining county or state line where the acreage is contiguous

Basic Definitions

- Insurable Acreage: Hayland and grazingland that is not planted annually
\square Overseeding into acreage of existing forage crops is acceptable
\square Annually planted crops currently not insurable
\square Insurable acres will consist of the total number of acres suitable for insurance under these crop provisions
- Includes both insured acres and uninsured acres

Basic Definitions

■ Insured Acres: The number of insurable acres selected to be insured by a producer
\square May choose to insure either Grazingland, Hayland, or both
\square Not required to insure 100\% of the crop type(s)

- If the insured chooses to insure the crop types under this policy they cannot insure the same crop under any other FCIC subsidized program

Basic Definitions

- Unit: The insured acres within or assigned to a Grid ID for each crop type and index interval
\square If there are multiple Grid IDs on a policy, the index values are not added together, each unit and crop stands on its’ own
\square Basic Units only - no basic unit discount

Basic Definitions

- County Base Value: established production value of grazingland and hayland forage
\square Only one value per county for each crop type
\square Does not include GRP 1.5 multiplier
- Productivity Factor: A percentage multiplier allowing the insured to individualize coverage based on their individual crop productivity
\square Insured selects between 60 and 150\%
- Concept is the same as 'price election' in other GRP policies
- Only one productivity factor may be selected per county and crop type

Basic Definitions

- Dollar Amount of Protection per Acre: The county base value (CBV) per acre, multiplied by the productivity factor (PF) ($60 \%-150 \%$), multiplied by the coverage level (CL) (70\%-90\%) EXAMPLE:

$$
\$ 17.65(\mathrm{CBV}) \times 1.20(\mathrm{PF}) \times 0.85(\mathrm{CL})=\$ \mathbf{1 8 . 0 0} \text { per Acre }
$$

\square Only one dollar amount of protection per acre for each county and crop type

Basic Definitions

■ Policy Protection per Unit: Dollar amount of protection per acre, multiplied by the insured acres, multiplied by the producer's share of the unit for each grid

EXAMPLE:

$\$$ Amount of Protection/ac = \$18.00, Insured Acres = 1,000, Share = 100\%, 50\% Interval II, 50\% Interval III
For:
Index Interval II: $\$ 18.00 \times 500$ ac $\times 100 \%$ (share) $=\mathbf{\$ 9 , 0 0 0}$
Index Interval III: $\$ 18.00 \times 500$ ac $x \mathbf{1 0 0 \%}$ (share) $=\mathbf{\$ 9 , 0 0 0}$
■ Policy Protection: The sum of the policy protection per units (\$18,000)

Program Dates

■ Crop Year: February 01 - January 31
■ Sales Closing Date: November 30 (crop type, dollar amount of protection per acre, coverage, Grid ID, index intervals, and items relevant to acreage report)

- Acreage Reporting Date: November 30
- Contract Change Date: August 31

■ Premium Billing Date: October 01

Program Dates

Program Dates

- Crop Year: April 01 - March 31

■ Sales Closing Date: November 30 (crop type, dollar amount of protection per acre, coverage, Grid ID, index intervals, and items relevant to acreage report)

- Acreage Reporting Date: November 30
- Contract Change Date: August 31

■ Premium Billing Date: October 01

Program Dates

Coverage

- CAT
\square Coverage currently not available
- Coverage Levels
$\square 70,75,80,85$, or 90%
\square Only one coverage level for each of the insured crop types in the county
\square Consistent with other GRP RBUP

Index Intervals

- Index Interval: a specified period of time in which precipitation data is collected resulting in a grid index
\square Producer can insure in any interval
- Can insure in 2, 3, 4, 5, or all 6 intervals - or any combination
\square Minimum insurance $=10 \%$ in any chosen interval
$\square \underline{\text { Maximum insurance }}$
- Producer must insure in at least 2 intervals
- Maximum percentage allowed located in SPOI (ranges 50-70\%)
- Maximum percentage determined primarily by number of frost free dates/growing season

Index Intervals

INDEX INTERVALS
(221) Index Interval I
(222) Index Interval II
(223) Index Interval III
(224) Index Interval IV
(225) Index Interval V
(226) Index Interval VI

START DATE END DATE

February 1
April 1
June 1
August 1
October 1
December 1

March 31
May 31
July 31
September 30
November 30
January 31

Index Intervals

- Index Interval: a specified period of time in which NDVI data is collected resulting in a grid index
\square Producer can insure in any interval
- Can insure in $1,2,3$, or all 4 intervals - or any combination
\square Minimum insurance $=10 \%$ in any chosen interval
$\square \underline{\text { Maximum insurance }}$
- There is no maximum amount of insurance per interval

Index Intervals

INDEX INTERVALS
(231) Index Interval I
(232) Index Interval II
(233) Index Interval III
(234) Index Interval IV

START DATE END DATE

April 1
July 1
October 1
January 1

June 30
September 30
December 31
March 31

Index Definitions

- Expected Grid Index: Based on the historical mean accumulated data by Index Interval, expressed as a percentage; EGI $=100$
- Data $=$ precipitation RAINFALL
- Data $=$ NDVI greenness VEGETATION
- Trigger Grid Index: The selected coverage level multiplied by the Expected Grid Index
\square i.e. - Coverage Level $=85$; then Trigger Grid Index $=85$
\square If the final grid index falls below the trigger grid index, the insured may be due an indemnity
- Final Grid Index: Based on the current accumulated data for each Index Interval
\square If current data represents a 40% reduction, then $\mathrm{FGI}=60$
- Data $=$ precipitation RAINFALL
- Data $=$ NDVI greenness VEGETATION

Rates and Premiums

■ Premium Rate is applied to each Unit
\square All units independently rated

- Each Grid ID, Crop Type, Coverage Level, and Index Interval
- Minimizes adverse selection
\square Premium/unit (Index Interval) $=\$$ amount of protection/acre x number of insured acres/unit x premium rate x adjustment factor of 0.01 x share

Rates and Premiums

- Premium Subsidy per Unit =

Premium per Unit x Subsidy Rate

- Producer Premium per Unit =

Premium per Unit - Premium Subsidy per Unit

Bотн

Rates and Premiums

■ Total Policy Premium:
\square The sum of all "premium per unit" values for the policy

- Total Subsidy:
\square The sum of all "premium subsidy per unit" values for the policy
- Total Producer Premium:
\square The sum of all "producer premium per unit" values for the policy

Trigger and Indemnity

■ Payment Calculation Factor:
\square Consistent with other GRP Programs
\square (Trigger Grid Index - Final Grid Index)/Trigger Grid Index) for each Unit
\square An indemnity may be made only if the Final Grid Index is less than the Trigger Grid Index
\square If indemnity is due, it will be issued not later than 60 days following the determination of the Final Grid Index
\square Indemnity =

- Payment Calculation Factor x Policy Protection/Unit

Trigger and Indemnity Example

EXAMPLE:
Trigger Grid Index (Coverage Level) $=85$

Final Grid Index: Interval II = 90, Interval III = 60
Payment Calculation Factor =
Index Interval II: $(85-90) / 85=$ No indemnity due $(90>$ TGI)
Index Interval III: $(85-60) / 85=0.294$

Total Indemnity = \$2,646
Index Interval II = \$0
Index Interval III $=\mathbf{(\$ 9 , 0 0 0} \times \mathbf{0 . 2 9 4})=\mathbf{\$ 2 , 6 4 6}$
$\{\$ 18.00 \times 500$ (acres in III) 1.0 (share) $\} \times 0.294=\$ 2,646$

Program Basics, Quick Review

- County - contiguous acreage can cross county/state lines
- Insurable and Insured acres
- Basic Units only

■ Sales Closing Date: November 30 ${ }^{\text {th }}$

- Productivity Factor
- Dollar Amount of Protection per Acre:
\square CBV x PF (60% - 150\%) x CL (70% - 90\%)

Program Basics, Quick Review

- Multiple Index Intervals
$\square 6$, 2-month intervals
- Must select at least 2 intervals
\square 4, 3-month intervals
RAINFALL
- Can select 1 or more intervals
- Policy Protection per Unit:
\square \$ Amount of Protection per Ac x Insured Acres x share

Program Basics, Quick Review

- Premium per Unit:
$\square \$$ amount of protection/acre x number of insured acres/unit x premium rate x adjustment factor of 0.01 x share
- Payment Calculation Factor:
\square (Trigger Grid Index - Final Grid Index)/Trigger Grid Index)
- Indemnity:
\square Payment Calculation Factor x Policy Protection per Unit

Questions?

Grid ID Selection

■ Grid ID: A specific code associated with each grid
\square Number $=$ typically 5 digits Rainfall
\square Number = typically 6 digits Vegetation

- Point of Reference: A designated point, identifiable by longitude and latitude
\square Selected by the insured
\square Point that best represents the insured acreage
\square This determines the Grid ID for insurance

Grid ID Selection

- Certify the points of reference are representative of the acreage assigned to each Grid ID and the amount of acreage in each Grid ID(s)
\square Example: if the contiguous acreage is located in four grids the acreage can be separated into two, three, or four grids - or left all in one grid
\square The same acres cannot be insured in more than one Grid ID or county
- Determine the point of reference and corresponding Grid ID by Sales Closing Date

Examples of Determining Grid ID(s)

ㅁ Contiguous Acreage - One Grid
\square The insured picks one point of reference on the property

Grid 1	Grid 2

Examples of Determining Grid ID(s)

■ Contiguous Acreage - Multiple Grids, Counties, and/or States (Combined)
\square The insured picks one point of reference in the contiguous acreage (could pick Grid 1 or Grid 2)

Grid 1	

Bотн

Examples of Determining Grid ID(s)

- Contiguous Acreage - Multiple Grids, Counties, and/or States (Separated)
\square The insured selects one point of reference in each Grid and assigns the number of acres

Grid 1		Grid 2

Examples of Determining Grid ID(s)

- Determining the Grid ID (s) for Non-Contiguous Acreage (multiple properties)
\square A point of reference must be selected for each separate, non-contiguous acreage
\square The steps in determining the point of reference are similar to the steps outlined for contiguous acreage, simply repeated for each non-contiguous acreage to be insured

Examples of Determining Grid ID(s)

\square The insured has two separate acreage locations in two grids
\square The insured picks a point of reference in Grid 1 and a point of reference in Grid 4 and insures the two properties under two separate Grid ID’s

Grid 1	

Examples of Determining Grid ID(s)

\square The insured has two separate acreage locations in three grids
\square First, the insured would pick a point of reference in Grid 4
\square The insured then has the option of combining his acreage in Grid 1 and Grid 2, or insuring them separately by grid

Examples of Determining Grid ID(s)

\square If the non-contiguous acreage is located in the same grid
\square The non-contiguous acreage will be combined and given a single Grid ID

Grid 1		

Review of Determining Grid ID(s)

Type of Acreage	Grid Information	Guideline
Contiguous Acreage	Single Grid	Choose one point of reference
Contiguous Acreage	Multiple Grids - Combined	Choose one point of reference
Contiguous Acreage	Multiple Grids - Separated	Choose one point of reference for each Grid
Non-Contiguous Acreage (multiple properties)		Choose one point of reference for each, separate, non- contiguous acreage in the county

Grid ID Selection Test

Grid ID Selection Test

Questions?

Use of the Website

 AND INFORMATION Needed
Determining Grid ID(s)

- Primary step:
$\square \quad$ Accurately identify the Grid ID(s)

Web address for determining Grid ID(s):
RAINFALL
http://prfri-rma-map.tamu.edu/

Vegetation

http://prfvi-rma-map.tamu.edu/

Topographical Map

Map Driven Weather Grid Id Locator for Pasture, Rangeland, Forage Rainfall Index Insurance Program

Steps

1. Set Layer to Topo Map
2. Type in nearest town
3. Click FIND
4. View site list
5. Click site to view
6. Navigate to property
7. Switch layer to Photo
8. Navigate to point
9. Print view for records
10. Note Grid ID

Type a city name and click FIND
City: San Angelo, Texas FIND Possible matches. Click to view

1. San Angelo. Texas
2. San Angelo Junction. Texas

Select the type of map below Layer: 1977 Topo View data at this location
Lookup Grid ID Using Lat/Lon Decision Support Tool View Historical Rainfall Indices View Rates/Values
RMA Premium Calculator

Other Links

Return to RMA

San Angelo, Tom Green County, Texas, United States
Latitude=31.4599, Longitude=-100.4401, Rainfall Grid ID $=36753$.

Determining Grid ID(s) - Basic Steps

- Type in the city and/or county name where the property is located
- Select the city or county from the possible matches, a topo map for the area will be displayed
- Narrow the search by selecting an area near the actual location of the insured's property
- Once the applicant has located the general area, it is recommended they continue to refine the search by switching to the photo maps
- Using the topo map, photo map, or combination of both, choose an appropriate resolution for proper identification of the property boundaries and corresponding Grid ID(s)

Вотн

Photo Map

Map Driven Weather Grid Id Locator for Pasture, Rangeland, Forage Rainfall Index Insurance Program

18 mi E of San Angelo, Tom Green County, Texas, United States Latitude=31.5138, Longitude=-100.1403, Rainfall Grid ID=36754.

Determining Grid ID(s) - Additional Steps

- The insured then selects one point of reference on the property by moving the cross marker ('+') to that location
\square Grid ID is listed at the top of the screen (and on the map itself)
- A Print Icon is in the lower right hand corner of the screen
\square This printed map can be used as a record to verify the Grid ID
\square Once printed, the property boundary can also be outlined and initialed by the insured for verification purposes
- The insured must certify the point of reference

Coverage, Rate, and Index Reports

■ County Base Values - Accessible at RMA website

County Base Value Report for Pasture, Rangeland, Forage				
Crop Year: 2007 St		Colorado	Insurance Plan: (13) GRP RAINFALL INDEX	
County	Type	Base Value	Total Acrea	Per Interval
Adams	GRAZINGLAND (064)	8.26	MIN: 10%	Max: 60 \%
Adams	HAYLAND (063)	224.57	MIN : 10%	Max: 60 \%
Criteria Page			Report Menu	

Coverage, Rate, and Index Reports

- Rates - Accessible at RMA website

Premium Rate Report for Pasture, Rangeland, Forage

Crop Year: 2007
State: (08) Colorado
Insurance Plan: (13) GRP Rainfall Index

> | Coverage Level $\mathbf{7 0} \%$ | $\mathbf{7 5} \%$ | $\mathbf{8 0} \%$ | $\mathbf{8 5} \%$ | $\mathbf{9 0} \%$ | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Subsidy Factor | .64 | .64 | .59 | .59 | .55 |

				Unsubsidized Rates				
Grid ID	County	Interval	Type	70\%	75\%	80\%	85\%	90\%
24539	Weld	221 INDEX INTERVALI	063 HAYLAND	14.86\%	17.03\%	18.86\%	20.68\%	22.49\%
	Weld	221 INDEX INTERVALI	064 GRAZINGLAND	14.86\%	17.03\%	18.86\%	20.68\%	22.49\%
	Weld	222 INDEX INTERVAL II	063 HAYLAND	7.08\%	8.45\%	10.25\%	11.85\%	13.55\%
	Weld	222 INDEX INTERVAL II	064 GRAZINGLAND	7.08\%	8.45\%	10.25\%	11.85\%	13.55\%
	Weld	223 INDEX INTERVAL III	063 HAYLAND	7.07\%	8.47\%	10.02\%	11.51\%	12.82\%
	Weld	223 INDEX INTERVAL III	064 GRAZINGLAND	7.07\%	8.47\%	10.02\%	11.51\%	12.82\%
	Weld	224 INDEX INTERVAL IV	063 HAYLAND	6.46\%	8.02\%	9.87\%	11.96\%	14.13\%
	Weld	224 INDEX INTERVAL IV	064 GRAZINGLAND	6.46\%	8.02\%	9.87\%	11.96\%	14.13\%
	Weld	225 INDEX INTERVAL V	063 HAYLAND	12.78\%	14.87\%	16.99\%	18.69\%	20.30\%
	Weld	225 INDEX INTERVAL V	064 GRAZINGLAND	12.78\%	14.87\%	16.99\%	18.69\%	20.30\%
	Weld	226 INDEX INTERVAL VI	063 HAYLAND	12.07\%	14.02\%	15.94\%	17.84\%	19.58\%
	Weld	226 INDEX INTERVAL V/	064 GRAZINGLAND	12.07\%	14.02\%	15.94\%	17.84\%	19.58\%

Bотн

Coverage, Rate, and Index Reports

- Final Index, Payment Calculation Factors

NOTE: Final Grid Indices and Payment Factors are made available following the end date of the Index Interval as defined by the Special Provisions of Insurance.

Information Agents Need to Collect

■ Insurable Acres

- Share
- Producer Selections (for each County/State combination):
\square Crop Type
\square Grid IDs
\square Coverage Level
\square Productivity Factor
\square Index Intervals
\square Insured Acres
\square Amount of Insurance per Index Interval

BOTH

Worksheet Information

PASTURE, RANGELAND, FORAGE RAINFALL INDEX WOORKSHEET

Worksheet Information

General policy information

1. Insured's Name: ___ 2. Date: __ _ _ 3. State: ___ _ _ 4. County: \qquad (_)
2. Crop Type: \qquad 6. Coverage Level/Trigger Index: \qquad 7. Productivity Factor: \qquad \% 8. $\$ \mathrm{Amt}$ of Prot/Ac: \qquad

Finish with name and grower initials

\qquad (Agent's Signature)

Grower's Initials: \qquad

Worksheet Information

Insert the Grid ID
(determined from map and acreage location)

Put the number of insured acres (not required to insure 100\%)

Insert share

Calculate totals

BOTH

Worksheet Information

Insert Index Interval code

Calculate the number of insured acres per Index Interval (Insured acres x percentage in \#13)

Total acres (should equal total insured acres for the Grid ID)

Total in 14a should equal total insured acres

Worksheet Information

Look at the coverage and rate table to determine rate

Calculate the premium/unit = (\$ amount of protection/acre x number of insured acres/unit x premium rate x adjustment factor of 0.01 x share)

Worksheet Information

Worksheet Information - Completed

PASTURE, RANGELAND, FORAGE RAINFALL INDEX VVORKSHEET

1. Insured's Name: \quad 2. Date:
2. Crop Type: \qquad 3. State: \qquad (4. County: \qquad (——
3. Productivity Factor: \% 8. S Amt. of Prot/Ac:

$9 .$ Grid ID	10. Insurable Acreage	$11 .$ Insured Acreage	12. Share		$13 .$ Index Interval	$\begin{gathered} \text { 14. } \\ \text { Unit } \\ \text { Number } \end{gathered}$	15. \% Insured acreage/ Unit	```16. Insured acreage/ Unit```	17. Policy Protection/ Unit	18.Premium Rate/ $\$ 100$	$\begin{gathered} 19 . \\ \text { Premium/ } \\ \text { Unit } \end{gathered}$	$\underline{20} .$ Premium Subsidy Amt	21. Premium Due From Grower
			percentage				percentage	acres	dollars	dollars	dollars	dollars	dollars
37881	100	100	100	I	221	00100	50	50	900	12.00	108	64	44
				II	222	00200	50	50	900	14.00	126	74	52
				III									
				Iv									
				V									
				VI									
						Total	100	100					
37882	50	50	100	I	221	00100	10	5	90	13.50	12	7	5
				II	222	00200	50	25	450	13.00	59	35	24
				III									
				Iv									
				v									
				VI	226	00300	40	20	360	12.00	43	25	18
						Total	100	50					
37883	100	100	50	I	221	00100	50	50	450	13.00	59	35	24
				II									
				III									
				IV									
				v									
				VI	226	00200	50	50	450	12.00	54	32	22
						Total	100	100					
37884	245	245	100	I	221	00100	50	122.5	2205	13.00	287	169	118
				II	222	00200	30	73.5	1323	14.00	185	109	76
				III	223	00300	20	49	882	15.00	132	78	54
				IV									
				v									
				VI									
						Total	100	245					
								16a. 495	17a. $\$ 8,010$		19a. \$1,065	20a. $\$ 628$	21a. $\$ 437$

Prepared by:

Worksheet Information - Completed

PASTURE, RANGELAND, FORAGE RAINFALL INDEX VVORKSHEET

1. Insured's Name: \qquad 2. Date: 3. State: \qquad (4. County: \qquad C (
2. Crop Type:
3. Coverage Level/Trigger Index: \qquad 7. Productivity Factor:
\% 8. \$ Amt. of Prot/Ac:

$\underline{9 .}$ Grid ID	10.Insurable Acreage	11. Insured Acreage	12. Share		13. Index Interval	$14 .$ Unit Number	15. \% Insured acreage/ Unit	16. Insured acreage/ Unit	$\underline{17 .}$ Policy Protection/ Unit	18.Premium Rate/ $/ \$ 100$	19.Premium/ Unit	$20 .$ Premium Subsidy Amt	21. Premium Due From Grower
			percentage				percentage	acres	dollars	dollars	dollars	dollars	dollars
37881	100	100	100	I	221	00100	50	50	900	12.00	108	64	44
				II	222	00200	50	50	900	14.00	126	74	52
				III									
				IV									
				v									
				VI									
					1, $\times 1 \times 8$	Total	100	100					
37882	50	50	100	I	221	00100	10	5	90	13.50	12	7	5
				II	222	00200	50	25	450	13.00	59	35	24
				III									
				IV									
				V									
				VI	I 226	00300	40	20	360	12.00	43	25	18
						Total	100	50					
37883	100	100	50	I	221	00100	50	50	450	13.00	59	35	24
				II									
				III									
				IV									
				V									
				VI	I 226	00200	50	50	450	12.00	54	32	22
						Total	100	100					
37884	245	245	100	I	221	00100	50	122.5	2205	13.00	287	169	118
				II	222	00200	30	73.5	1323	14.00	185	109	76
				III	- 223	00300	20	49	882	15.00	132	78	54
				IV									
				V									
				VI									
						Total	100	245					
County Total	10a. 495 11a. 495		16a. 495 17a. \$8,010							\$19a. \$1,065 [20a. \$628] 21a. \$437			

Causes of Loss

- The reduction in the final grid index must be due to natural occurrences
\square A cause other than a natural occurrence will result in the assignment of a value to correspond to the reduction due to natural occurrences only

How the Index is Reported

- The Final Grid Index will be available on the RMA website following the end date of each Index Interval

Questions?

Joe B. Rancher

Contacts His Agent

A step-by-step example (based off the Rainfall program)

Determining Grid ID's

Joe Rancher has 645
acres of insurable
grazingland and hayland
in two counties. His
insurable acreage is
contained in five non-
contiguous properties:
A, B, C, D, and E.

Note: Actual Grid IDs will have 5 (RI) or 6 (VI) digits.

Decision

■ Joe Rancher decides to insure the four properties (535 insurable acres) located in County B and leave property A uninsured in County A

■ Had he chosen to insure Property A in County A, he would have had to insure that acreage separately because Property A is non-contiguous from his other properties and located in a different county

Decision

■ Property B - Contiguous acreage located in more than one grid
\square Decides to separate the property into two Grid IDs, with 100 insured acreage in Grid 1 and 50 insured acreage in Grid 2. He picks a reference point in each grid

Decision

- Property C - Contiguous acreage spread into more than one county, which contains two crop types (both grazingland and hayland with 50% share)
\square Decides to pick a point of reference in County B and use that point of reference to represent all the contiguous insurable grazingland acreage (100 acres) in both County A and County B (decides not to insure haylands)

Decision

- Property D and E - Non-Contiguous acreage located in a single grid (both grazingland with 100\% share)
\square Joe Rancher combines Properties D and E and insures all 245 acres under Grid ID 4

Summary

Insured Acreage, Grid ID, Coverage Level, Productivity Factor, \$ of Protection/Ac

Grid ID	Property	Insured Acreage
Grid 1 (insert the actual Grid ID number for the insured, i.e. 37881)	B	100
Grid 2 (insert the actual Grid ID number for the insured, i.e. 37882)	B	50
Grid 3 (insert the actual Grid ID number for the insured, i.e. 38773)	C	100
Grid 4 (insert the actual Grid ID number for the insured, i.e. 38774)	D \&E	245
Total	$\mathbf{4 9 5}$	

Joe Rancher selects for grazingland:
Coverage Level $=85 \%$
Productivity Factor $=120 \%$
County Base Value $=\$ 17.65$
Dollar Amount of Production per Acre

$$
\begin{aligned}
& =\$ 17.65 \times 0.85 \times 1.20 \\
& =\$ 18.00 \text { per Acre }
\end{aligned}
$$

Sunninary

Grid ID	Index Interval	Unit Number	\% Protection	Number of acres
Grid 1$\text { Insured acreage }=$$100$	I	00100	50\%	50 ac
	II	00200	50\%	50 ac
	III			
	IV			
	V			
	VI			
	Total		100\%	100 ac
Grid 2 Insured acreage $=$ 50	I	00100	10\%	5 ac
	II	00200	50\%	25 ac
	III			
	IV			
	V			
	VI	00300	40\%	20 ac
	Total		100\%	50 ac
Grid 3 Insured acreage $=$ 100	I	00100	50\%	50 ac
	II			
	III			
	IV			
	V			
	VI	00200	50\%	50 ac
	Total		100\%	100 ac
Grid 4 Insured acreage $=$ 245	I	00100	50\%	122.5 ac
	II	00200	30\%	73.5 ac
	III	00300	20\%	49 ac
	IV			
	V			
	VI			
	Total		100\%	245 ac

Designates specific percentage of the insured acreage to at least two of the index intervals for each Grid ID

Note: RAINFALL ONLY

He finds that he can place no more than 50% of his insured acreage to any one index interval

Note: RAINFALL ONLY

Note: Interval selections do not have to be contiguous

Policy Protection per Unit (10 Units)

Grid ID		Index interval	$\begin{gathered} \text { Unit } \\ \text { Number } \end{gathered}$	Policy Protection/Unit
Grid 1 Insured acreage $=100$ 100% share	I	(\$18.00 X 50ac X 1.0)	00100	\$900
	II	(\$18.00 X 50ac X 1.0)	00200	\$900
	III			
	IV			
	V			
	VI			
Grid 2 Insured acreage $=\mathbf{5 0}$ 100% share	I	(\$18.00 X 5ac X 1.0)	00100	\$90
	II	(\$18.00 X 25ac X 1.0)	00200	\$450
	III			
	IV			
	V			
	VI	(\$18.00 X 20ac X 1.0$)$	00300	\$360
Grid 3 Insured acreage $=100$ 50\% share	I	(\$18.00 X 50ac X 0.50)	00100	\$450
	II			
	III			
	IV			
	V			
	VI	(\$18.00 X 50ac X 0.50)	00200	\$450
Grid 4 Insured acreage $=245$ 100% share		(\$18.00 X 122.5ac X 1.0)	00100	\$2,205
	II	(\$18.00 X 73.5ac X 1.0)	00200	\$1,323
	III	(\$18.00 X 49ac X 1.0)	00300	\$882
	IV			
	V			
	VI			
Policy Protection				\$8,010

Premium

■ Joe Rancher and his agent look up the applicable premium rates using the premium rate tables

- Premium/unit (Index Interval) =
\$ amount of protection/acre
x number of insured acres/unit
x premium rate
x adjustment factor of 0.01
x share

Summary of Premium

Premium Subsidy Amount

- Joe Rancher and his agent refer to the GRP subsidy tables
\square For the coverage level of 85%, the applicable subsidy percentage is 59%
- Premium Subsidy/Unit =
\square Premium/unit x subsidy percentage
Example: $\$ 108 \times 0.59=\$ 64$

Premium Due from Producer

- The Premium due from Producer is the result of the Premium/unit minus the Subsidy/unit
- Premium per unit - Premium subsidy per unit Example: \$108-\$64 = \$44
- They sum the Subsidy and Producer Premiums to determine the Totals

Summary of Premium, Subsidy, and Producer Premium

Grid ID	Index Interval	Unit Number	Premiums	Premium Subsidy	Producer Premium
Grid 1	I	00100	\$108	\$64	\$44
	II	00200	\$126	\$74	\$52
	III				
	IV				
	V				
	VI				
Grid 2	I	00100	\$12	\$7	\$5
	II	00200	\$59	\$35	\$24
	III				
	IV				
	V				
	VI	00300	\$43	\$25	\$18
Grid 3	I	00100	\$59	\$35	\$24
	II				
	III				
	IV				
	V				
	VI	00200	\$54	\$32	\$22
Grid 4	I	00100	\$287	\$169	\$118
	II	00200	\$185	\$109	\$76
	III	00300	\$132	\$78	\$54
	IV				
	V				
	VI				
	Totals		\$1,065	\$628	\$437

Worksheet with All Information

PASTURE, RANGELAND, FORAGE RAINFALL INDEX VNORKSHEET

1. Insured's Name: \qquad Joe B. Rancher \qquad 2. Date: $10 / \underline{15 / 2006}$
2. State: $T \times(48)$
3. County:
Andrews (003)
4. Crop Type: _Grazingland 6. Coverage Level/Trigger Index: __ 85_ 7. Productivity Factor: _120_ \% 8. \$ Amt. of Prot/Ac: _18.00_

$9 .$ Grid ID	10.Insurable Acreage	$11 .$ Insured Acreage	12. Share		13. Index Interval	$14 .$ Unit Number	15. \% Insured acreage/ Unit	16. Insured acreage/ Unit	17. Policy Protection/ Unit	$\underline{18 .}$Premium Rate/ $\$ 100$	19.Premium/ Unit	$\underline{20}$ Premium Subsidy Amt	21. Premium Due From Grower
			percentage				percentage	acres	dollars	dollars	dollars	dollars	dollars
37881	100	100	100	I	221	00100	50	50	900	12.00	108	64	44
				II	222	00200	50	50	900	14.00	126	74	52
				III									
				IV									
				v									
				VI									
						Total	100	100					
37882	50	50	100	I	221	00100	10	5	90	13.50	12	7	5
				II	222	00200	50	25	450	13.00	59	35	24
				III									
				IV									
				v									
				VI	226	00300	40	20	360	12.00	43	25	18
						Total	100	50					
37883	100	100	50	I	221	00100	50	50	450	13.00	59	35	24
				II									
				III									
				IV									
				v									
				VI	226	00200	50	50	450	12.00	54	32	22
						Total	100	100					
37884	245	245	100	I	221	00100	50	122.5	2205	13.00	287	169	118
				II	222	00200	30	73.5	1323	14.00	185	109	76
				III	223	00300	2 O	49	882	15.00	132	78	54
				IV									
				V									
				VI,									
					\%	Total	100	245					
unty Total	0a. 495	1a. 495	¢		¢	, <, 尔	邓,	16a. 495	17a. $\$ 8,010$,	19a.\$1,065	0a. $\$ 628$	21a. $\$ 437$

Prepared by: \qquad (Agent's Signature)

Final GRID Index AND INDEMNITIES

A step-by-step example continued (based off the Rainfall program)

Bотн

Final and Trigger Grid Index

Grid ID	Index Interval	Unit Number	Final Grid Index	Trigger (Above or Below)
Grid 1	I	00100	120	Above
	II	00200	100	Above
	III			
	IV			
	V			
	VI			
Grid 2	I	00100	110	Above
	II	00200	90	Above
	III			
	IV			
	V			
	VI	00300	70	Below
Grid 3	I	00100	110	Above
	II			
	III			
	IV			
	V			
	VI	00200	60	Below
Grid 4	I	00100	120	Above
	II	00200	70	Below
	III	00300	60	Below
	IV			
	V			
	VI			

Trigger Grid Index is 85 for all grids and Index Intervals

Calculating Indemnities

- Payment calculation factor =
(trigger grid index - final grid index)
trigger grid index
- Indemnity payment = payment calculation factor x Policy protection per unit

Example Calculations

- Grid 4-245 Acres
- Index Interval I: The final grid index of 120 is above the trigger grid index of 85. No indemnity is due
- Index Interval II: The final grid index of 70 is below the trigger grid index of 85

$$
\begin{aligned}
\text { Payment calculation factor } & =(85-70) / 85 \\
& =0.176 \\
\text { Indemnity payment } & =0.176 \times \$ 1,323 \\
& =\$ 233
\end{aligned}
$$

- Index Interval III: The final grid index of 60 is below the trigger grid index of 85

$$
\begin{aligned}
\text { Payment calculation factor } & =(85-60) / 85 \\
& =0.294 \\
\text { Indemnity payment } & =0.294 \times \$ 882 \\
& =\$ 259
\end{aligned}
$$

Bотн

Summary of Yearly Policy in Example

■ Joe Rancher insured 495 acres of grazingland in Four separate Grid ID’s

- Joe Rancher paid \$437 in premium for $\$ 8,010$ in protection
- A total indemnity of $\$ 687$ will be due to Joe Rancher for this County and Crop Year

Questions?

Additional Program Tools and
 INFORMATION

PRF Decision Tool

- The Decision Tool is not part of the program
\square Not required to buy insurance
\square Provides estimates
\square Values are based on current information to derive historical estimates of indemnity, premium, and subsidy numbers
\square May not match the official figures released by FCIC in past years
\square Contact a qualified insurance agent for actual premium quotes

Вотн

Decision Tool: Example

Вотн

Decision Tool: Example

This tool provides estimates for indemnity, premium, and subsidy values for the Pasture, Rangeland, Forage Rainfall Index Pilot Program. These values are based on current information to derive historical estimates of indemnity, premium, and subsidy numbers and may not match the official figures released by FCIC in past years. Contact a qualified insurance agent for actual premium quotes.

Index Interval*	Insured Acres per Index Interval	Policy Protection per Unit	Premium Rate per \$1nn	Total Premium (p / ac)	$\begin{aligned} & \text { Premium } \\ & \text { Subsidy } \\ & \hline \text { (\$/ac) } \end{aligned}$	Producer premium (\$/ac)	Index Value	Indemnity (\$/ac)
I	122.50	\$1,389	31.33	\$3.55	\$2.10	\$1.46	41.8	\$5.76
II	73.50	\$833	31.56	\$3.58	\$2.11	\$1.47	43.1	\$5.59
III	49	\$556	31.90	\$3.62	\$2.14	\$1.48	37.6	\$6.33
IV	0	\$0	31.24	\$0.00	\$0.00	\$0.00	38.1	\$0.00
V	0	\$0	30.72	\$0.00	\$0.00	\$0.00	39.6	\$0.00
VI	0	\$0	31.06	\$0.00	\$0.00	\$0.00	39.5	\$0.00
Per Acre	N/A	N/A	N/A	\$3.57	\$2.11	\$1.46	N/A	\$5.82
Policy Total	245	\$2,778	N/A	\$875	\$516	\$359	N/A	\$1,427

*Intervals: I-Feb-Mar, II-Apr-May, III-June-July, IV-Aug-Sep, Y-Oct-Nov, YI-Dec-Jan

Submit Query

Insert the number of acres for each

Index Interval (percentages allowed specified in the Special Provisions)

Once information is entered, click Submit Query
(if any information is changed must resubmit query)

Additional Information

■ Historical Index
\square Lookup values since 1948
RAINFALL
\square Look up values since 1989 VEGETATION

- Lookup Grid ID using Longitude/Latitude
\square Must be submitted in the correct data format
- RMA premium calculator

Summary

- New programs for a commodity with little or no history of crop insurance
- GRP based program
- Losses determined by index (not individual production)
- Terminology differences
- Producer is allowed or required to make choices
- Can tailor the program to producer risk management needs

Questions?

